Modelling Batch Reactor for Milk Bush (*Thevetia peruviana*) Oil Transesterification in the Production of Biodiesel.

M.F.N Abowei¹, O. M. Olatunji² and A. J. Akor²

¹Department of Petrochemical Engineering

²Department of Agricultural and Environmental Engineering

Rivers State University of Science and Technology, PMB 5080, Port Harcourt, Nigeria.

e-mail: ololade_moses1@yahoo.com; profmfnabowei@yahoo.com

Abstract: In this study, modelling equations for the simulation of batch reactor functional dimensions at isothermal condition are proposed exploiting the transesterification kinetic of Olatunji *et. al.* (2012). The kinetic model proposed by Olatunji *et. al.* (2012) was obtained through the laboratory experiment on which Biodiesel was produced using alcohol to oil molar ratio of 6:1, 9:1 and 12:1; the reaction temperature was put at constant 50°C, and the catalyst loading percentages is between 0.5% and 1.5% as proposed by Olatunji *et. al.* (2012). From the results obtained, the modelling equations proposed are capable of simulating reactor dimensions as a function of the kinetic parameters. The simulated results obtained was analysed with MATLAB programming language which has demonstrated the dependency of reactor dimensions as proposed by the kinetic parameters proposed by Olatunji *et. al.* (2012).

Key words: Batch reactor, Milk bush oil, Transesterification, Biodiesel, Production

INTRODUCTION

In the search for alternative renewable energy sources, great deal of attention is focused on the Chemical Kinetics of Milk bush (*Thevetia peruviana*) oil transesterification process in biodiesel production (Olatunji *et. al.*,2011). The work of Olatunji *et. al.*, 2012 proposed the reaction kinetics of esters as follows:

$$\frac{dC_{TG}}{dt} = r_{TG} = r_{1TG} + r_{2TG}$$

$$= -K_1 C_{TG} C_A + K_2 C_{DG} C_E \tag{1}$$

Where,

 C_{TG} = Concentration of Triglyceride

 C_A = Concentration of Alcohol

 C_{DG} = Concentration of Diglyceride

K = Rate Constant.

But,

 $K_1C_A = K'_1$

$$\frac{dC_{TG}}{dt} = r_{TG} = r_{2TG} = -K_1 C_{TG} + C_{TG} + K_2 C_D C_E$$
 (2)

Where.

 K'_1 = effective rate constant

 C_E = concentration of Ester

In order to find a solution to equation (6) there is need to express C_D and C_E as a function of time. At the initial period when the reaction start to the final period (ie. time t_i to t_i , $t_i = 0$ and $t_f = t_{DG1}$). The diglyceride concentration was increased and then decreased.

Applying the equation proposed by Fogler (Fogler, 1999).

The suggested formula for this type of change in concentration is composed of two exponential terms.

$$C_{DG} = \frac{\beta_1 (e^{-\beta_2 t} - e^{-\beta_3 t})}{\beta_3 - \beta_2} \tag{3}$$

Where,

 β_1 , β_2 and β_3 are constants

t = time

$$C_{DG} = C_{DGo} + \frac{\beta_1 (e^{-\beta_2 t} - e^{-\beta_3 t})}{\beta_3 - \beta_2}$$
 (4)

Where,

C_{DGO} = Initial concentration of Diglyceride

After the final period, ie. $t_f = t_{dg1}$, diglyceride concentration went below its initial value, hence, equation (8) cannot be used to predict the final concentration of Diglyceride at this period. Therefore equation 8 may be written as equation 9.

$$C_D = C_{Do} + \frac{\beta_1(e^{-\beta_2 t} - e^{-\beta_3 t})}{\beta_3 - \beta_2} - \frac{\beta_4(e^{-\beta_5 t} - e^{-\beta_6 t})}{\beta_6 - \beta_5}$$
 (5)

Also,

$$C_E = C_{Eo} + \frac{w_1(e^{-w_2t} - e^{-w_3t})}{w_3 - w_2} \tag{6}$$

Substituting equation (9) and (10) into equation 6, taking the Laplace of the new equation developed; also by applying the partial fraction technique, and taking the inverse Laplace of the final equation.

 C_{TG} , C_{DG} , and C_{MG} final equations were developed.

$$\begin{split} C_{TG} &= \frac{k_2 C_{D0} C_{E0}}{k_1'} + \frac{k_2 C_{E0} \left(\frac{\beta_1}{\beta_3 - \beta_2}\right)}{k_1' - \beta_2} e^{-\beta_2 t} - \frac{k_2 C_{E0} \left(\frac{\beta_1}{\beta_3 - \beta_2}\right)}{k_1' - \beta_3} e^{-\beta_3 t} \\ &- \frac{k_2 C_{E0} \left(\frac{\beta_4}{\beta_6 - \beta_5}\right)}{k_1' - \beta_5} e^{-\beta_5 t} + \frac{k_2 C_{E0} \left(\frac{\beta_4}{\beta_6 - \beta_5}\right)}{k_1' - \beta_5} e^{-\beta_6 t} + \frac{k_2 C_{D0} \left(\frac{\omega_1}{\omega_3 - \omega_2}\right)}{k_1' - \omega_2} e^{-\omega_2 t} \\ &- \frac{k_2 C_{D0} \left(\frac{\omega_1}{\omega_3 - \omega_2}\right)}{k_1' - \omega_3} e^{-\omega_3 t} + \frac{k_2 \left(\frac{\beta_1}{\beta_3 - \beta_2}\right) \left(\frac{\omega_1}{\omega_3 - \omega_2}\right)}{k_1' - (\beta_2 + \omega_2)} e^{-(\beta_2 + \omega_2) t} \\ &+ \frac{k_2 \left(\frac{\beta_1}{\beta_3 - \beta_2}\right) \left(\frac{\omega_1}{\omega_3 - \omega_2}\right)}{k_1' - (\beta_3 + \omega_3)} e^{-(\beta_3 + \omega_3) t} - \frac{k_2 \left(\frac{\beta_1}{\beta_3 - \beta_2}\right) \left(\frac{\omega_1}{\omega_3 - \omega_2}\right)}{k_1' - (\beta_2 + \omega_3)} e^{-(\beta_2 + \omega_3) t} \end{split}$$

$$-\frac{k_{2}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)}{k_{1}^{'}-(\beta_{3}+\omega_{3})}e^{-(\beta_{3}+\omega_{2})t} - \frac{k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)}{k_{1}^{'}-(\beta_{5}+\omega_{2})}e^{-(\beta_{5}+\omega_{2})t}$$

$$-\frac{k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)}{k_{1}^{'}-(\beta_{6}+\omega_{3})}e^{-(\beta_{6}+\omega_{3})t} + \frac{k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)}{k_{1}^{'}-(\beta_{5}+\omega_{3})}e^{-(\beta_{5}+\omega_{2})t}$$

$$+\frac{k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)}{k_{1}^{'}-(\beta_{6}+\omega_{2})}e^{-(\beta_{6}+\omega_{2})t}$$

$$-\frac{(k_{2}C_{D0}C_{E0})}{k_{1}'} - \left(k_{2}C_{E0}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\right) + \left(k_{2}C_{E0}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\right) - \frac{\left(-k_{2}C_{E0}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\right)}{k_{1}' - \beta_{5}} + \frac{\left(-k_{2}C_{E0}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\right)}{k_{1}' - \beta_{6}} - \frac{\left(k_{2}C_{D0}\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - \omega_{2}} + \frac{\left(k_{2}C_{D0}\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - \omega_{3}} - \frac{\left(k_{2}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - (\beta_{2}+\omega_{2})} - \frac{\left(k_{2}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - (\beta_{3}+\omega_{3})} + \frac{\left(k_{2}\left(\frac{\beta_{1}}{\beta_{3}-\beta_{2}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - (\beta_{3}+\omega_{2})} - \frac{\left(-k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - (\beta_{6}+\omega_{3})} - \frac{\left(-k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - (\beta_{6}+\omega_{3})} + \frac{\left(-k_{2}\left(\frac{\beta_{4}}{\beta_{6}-\beta_{5}}\right)\left(\frac{\omega_{1}}{\omega_{3}-\omega_{2}}\right)\right)}{k_{1}' - (\beta_{6}+\omega_{2})} + C_{T0}$$

Where,

K = rate constants

The final concentration of Diglyceride, Monoglyceride, Ester (Biodiesel) and Glycerol were derived in the same manner.

Where, α_i , β_i , ω_i , are constants derived from Fogler's equation to calculate the change in concentration of Tri, Di, Mono glycerides, Ester and glycerol. Type equation here.

These constants are determined using initial guess values. From Linear Regression method using MATLAB programming which was written to validate the model.

The aspect of modelling reactor functional parameters for large scale production of ester using the proposed Chemical Kinetic expression need to be proposed.

MATERIALS AND METHODS

The reaction mechanism demonstrated Isothermal Characteristics and the resulting design equation for a Batch Reactor is described as:

$$V_R = \frac{N_A}{t} \int \frac{dX}{-r_A} \tag{8}$$

From equation 1 it is possible that,

$$V_{R} = \frac{N_{A}}{t} \int \frac{dX_{A}}{K_{1}C_{TG}C_{A} + K_{2}C_{DG}C_{E}}$$
 (9)

$$V_R = \frac{N_A}{t} \int (K_1 C_{TG} C_A + K_2 C_{DG} C_E)^{-1} dX_A$$
 (10)

Appling Integration by Part,

$$V_R = \frac{N_A}{t} \left(\frac{dX_A}{K_1 C_{AO} (1 - X_A - K_2 (M + X_A))} \right) \tag{11}$$

Where,

 V_R = Volume of the Batch Reactor; K_1 = Rate Constant

 C_{AO} = Initial Concentration of Alcohol; M = Mass of the Oil

 X_A = Molecular Weight of the Oil

Determination of heat generation per unit volume, $oldsymbol{Q}$

$$Q = \Delta H_R F_{AO} X_A \tag{12}$$

$$\frac{Q}{V_R} = \frac{\Delta H_R F_{AO} X_A}{V_R} \tag{13}$$

But,

$$\frac{Q}{V_R} = q$$
 and $F_{AO} = \frac{N_A}{T}$

Therefore,

$$q = \frac{\Delta H_R N_A X_A}{V_B T} \tag{14}$$

Substituting the values of V_R into equation 14 therefore,

$$q = \frac{\Delta H_R N_A X_A}{T} \left(\left(\frac{N_A}{t} \left(\frac{dX_A}{K_1 C_{AO}(1 - X_A - K_2(M + X_A))} \right) \right)^{-1} \right)$$
 (15)

Determination of Overall heat transfer coefficient, u

$$q = uA\Delta T \tag{16}$$

Therefore,

$$u = \frac{q}{A_P \Delta T} \tag{17}$$

But,

 $A_R = \pi R L$, therefore,

$$u = \frac{q}{\pi R L \Lambda T} \tag{18}$$

Where,

u = overall heat transfer coefficient

q = heat generated per unit volume

R = radius of the batch reactor

L = length of the batch reactor, and

T = temperature

RESULTS AND DISCUSSIONS

Process optimization

The effects of catalyst concentration, alcohol-to-oil molar ratio and time were considered in the optimization of Milk bush (*Thevetia peruviana*) oil transesterification process. Tables 1.0 to 5.0, summarized the effects of catalyst concentration, alcohol-to-oil molar ratio and time in terms of conversion.

Effect of catalyst loading

The catalyst loading (KOH) was varied from 0.5 to 1.5 wt.% in this study. The reaction temperature was maintained at 50°C. The experimental results shows similar trend with the calculated results which shows that there was an increase in ester concentrations with catalyst loading. This is a typical observation which agrees with the findings of Zhous et al. (2003). However, the rate of the increase in ester concentration dropped when catalyst concentration was increased beyond 1 wt. %. In addition, the conversion increased as catalyst concentration increased. Potassium Hydroxide ions react with the methanol molecule to produce methoxide ions, and the rate of reaction increased when hydroxide concentration was increased.

TABLE 1: 0.5% KOH,6:1 alcohol to oil molar ratio at 50°C

Replicat	Time(m	α	β	α^2	β^2	Αβ	β_{est}	β - β_{est}	\mathbb{R}^2
ion	in)		•		•	•		, ,	
1	0.0	2.4423	2.4623	5.9648	6.0629	6.0137	2.4717	0.00936	0.0000877465
								731	
2	0.5	14.210	14.250	201.932	203.065	202.49	14.2361	0.07396	0.0001949679
		3	1	6	4	82	4	309	
3	1.0	20.426	20.475	417.225	419.225	418.22	20.4500	0.02492	0.0006213967
		1	0	6	6	44	72	783	
4	1.5	20.734	20.754	429.902	430.736	430.31	20.7579	0.00377	0.0000142867
		1	2	9	8	97	80	977	
5	2.0	21.124	21.146	446.248	447.191	446.71	21.1483	0.00146	0.00000213925
		6	9	7	4	98	62	262	72
6	3.0	23.185	23.185	537.586	537.586	537.58	23.2090	0.02314	0.0005356553
		9	9	0	0	60	44	423	
7	4.0	23.297	23.300	542.764	542.890	542.82	23.3204	0.02041	0.0004166012
		3	0	2	0	71	108	081	
8	5.0	23.378	23.398	546.563	547.466	547.01	23.4017	0.00378	0.00001433675
		7	0	6	4	48	86	639	
9	6.0	23.456	23.467	550.212	550.700	550.45	23.4796	0.01266	0.00016035208
		6	0	1	1	60	6	302	
10	7.0	23.534	23.573	553.863	555.691	554.77	23.5573	0.01576	0.00024838674
		3	1	3	0	64	4	029	
11	8.0	23.612	23.662	557.536	550.932	558.73	23.6352	0.02768	0.00076638503
		2	9	0	8	31	16	37	1
12	9.0	24.541	24.551	602.270	602.761	602.51	24.5639	0.01273	0.00016224747
		2	2	5	4	59	4	76	
13	10.0	30.764	30.784	946.454	947.685	947.06	30.7853	0.00087	0.00000075803
		5	5	5	4	98	71	065	14225
		274.70	275.01	6,338.5	6,350.9	6,344.7			0.003
		81	11	248	952	55			

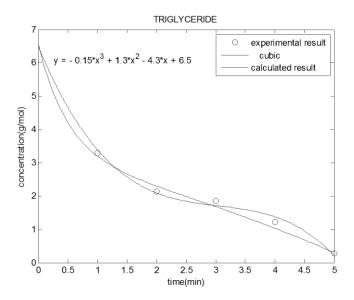
TABLE 2: 1.0% KOH,6:1 alcohol to oil molar ratio at 50°C

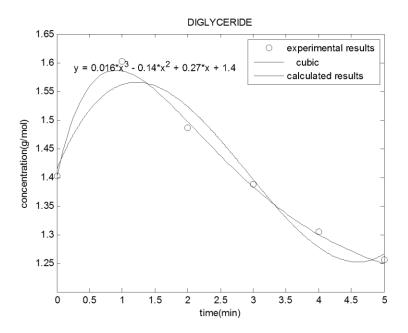
Replicati	Time(m	α	β	α^2	β^2	αβ	β_{est}	β - β_{est}	${f R}^2$
on	in)		-		-	-	•		
1	0.0	2.3205	2.3406	5.3850	5.4784	5.4315	2.3481	-	0.00005672
		6						0.007531	765
								78	
2	0.5	16.355	16.386	267.515	268.501	268.007	16.37786	0.008142	0.00006629
		9	0	5	0	8		4	80
3	1.0	19.829	19.869	393.189	394.777	393.982	19.8496	0.01943	0.00037758
		0	0	2	2	4			71
4	1.5	22.132	22.143	489.865	490.312	490.088	22.15254	-	0.00009114
		95	0	3	4	8	7	0.009547	215
5	2.0	30.065	30.086	903.940	905.173	904.556	30.08207	0.004026	0.00001621
		6	1	3	4	6		24	061
6	3.0	30.230	30.250	93.8831	915.104	914.493	30.24590	0.003792	0.00001438
		5	7		9	8	8	2	08
7	4.0	30.325	30.345	919.623	920.831	920.227	30.34167	0.003530	0.00001246
		3	2	8	2	3	0	12	175
8	5.0	30.415	30.444	925.120	926.873	925.996	30.43213	0.012466	0.00015540
		8	6	9	7	86	3	32	913
9	6.0	30.506	30.516	930.646	931.256	930.951	30.52280	-	0.00003965
		5	5	5	8	6		0.006297	725
								4	
10	7.0	30.597	30.600	936.207	936.360	936.283	30.6138	-	0.00018936
		5	0	0	0	5		0.013761	51
11	8.0	30.689	30.709	941.820	943.048	942.434	30.70532	0.003775	0.00001425
		1	1	9	8	6	436	04	55
12	9.0	30.781	30.791	947.467	948.085	947.777	30.79718	0.006187	0.00003828
		0	0	0	7	7	76	6	64
13	10.0	30.873	30.893	953.160	954.396	953.778	30.88945	0.003849	0.00001481
		3	3	7	0	1		32	726
		335.12	335.37	9,527.82	9,540.19	9,534.01			0.0011
		30	51	52	95	12			

TABLE 3: 1.5% KOH,6:1 alcohol to oil molar ratio at $50^{\rm o}{\rm C}$

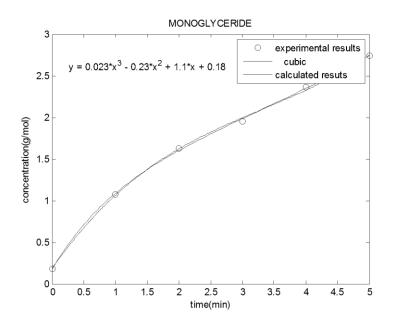
Replicati	Time(m	α	β	α^2	β^2	αβ	β_{est}	β - β_{est}	\mathbb{R}^2
on	in)								
1	0.0	2.4528	2.4730	6.0162	6.1157	6.0658	2.4663	0.006718	0.000451433
								88	48
2	0.5	16.596	16.596	275.450	275.795	275.623	16.6158	-	0.000076364
		7	7	5	8	1		0.008738	528
								68	
3	1.0	20.681	20.701	427.707	428.568	428.137	20.7018	0.000037	0.000000001
		09	9	5	7	9	6	564	411
4	1.5	22.463	22.473	504.622	505.058	504.840	22.4853	-	0.000138898
		8	5	3	2	2		0.011785	482
								52	
5	2.0		27.404	750.995	750.995	750.995	27.4278	-	0.000055045
		27.404	3	7	7	7		0.023461	23
		3						72	
6	3.0	27.337	27.377	747.338	749.527	748.432	27.3609	0.016565	0.000274399
		5	5	9	5	4	35		23
7	4.0	27.482	27.507	755.260	756.360	755.810	27.5055	0.003492	0.000012199
		0	0	3	0	0		8	652
8	5.0	27.619	27.679	762.858	766.176	764.516	27.6434	0.036452	0.001328751
		9	9	9	9	1	5	04	22
9	6.0	27.758	27.798	770.512	772.734	771.622	27.7817	0.016396	0.000268853
		1	1	1	4	4		76	74
10	7.0	27.897	27.917	778.259	779.375	778.817	27.9209	-	0.000013387
		3	3	3	6	3	6	0.003658	7
								92	
11	8.0	30.037	30.067	902.245	904.048	903.146	30.0619	0.005485	0.000030085
		4	4	4	5	5		04	7
12	9.0	30.178	30.198	910.735	911.943	911.339	30.2030	-0.457136	0.000020897
		4	4	8	4	4			3
13	10.0	30.230	30.250	913.907	915.117	914.511	30.2554	-	0.000021089
		9	9	3	0	9	92	0.004592	77
								36	
		318.14	318.45	8,505.91	8,521.81	8.513.85			0.0023
		02	13	02	74	87			

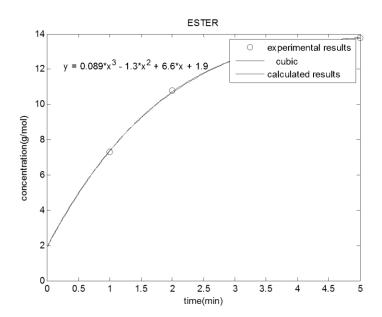
TABLE 4: 1.0% KOH,9:1 alcohol to oil molar ratio at 50° C


O n) Z.3468 2.3668 5.50747 5.601742 2.4009 0.034069 0.00116072192 2 0.5 9.1462 9.1762 83.6530 84.2026 83.927 9.2016 -0.02543 0.00064664624 3 1.0 15.200 15.240 231.0552 232.2728 231.66 15.2571 - 0.016640 0.00027689292 4 1.5 18.301 18.351 334.9303 336.7629 335.84 18.3584 0.007260 0.00005271079 5 2.0 18.664 18.684 348.3673 349.1143 348.74 18.7219 -0.03733 0.0013937469 6 3.0 24.983 622.6772 624.1803 623.42 25.0121 -0.2849 0.00081171998 7 4.0 25.336 627.77 713.2852 714.3539 713.81 26.7663 - 0.018667 0.00034846436 8 5.0 26.707 26.727 713.2852 714.3539 713.81 26.7663 <	S/N	TIME(Mi	α	β	α^2	β^2	αβ	β_{est}	β-β _{est}	\mathbb{R}^2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O	n)		-		-	-			
2 0.5 9.1462 9.1762 83.6530 84.2026 83.927 9.2016 -0.02543 0.00064664624 3 1.0 15.200 15.240 231.0552 232.2728 231.66 15.2571 - 0.00027689292 4 1.5 18.301 18.351 334.9303 336.7629 335.84 18.3584 0.007260 0.00005271079 5 2.0 18.664 18.684 348.3673 349.1143 348.74 18.7219 -0.03733 0.0013937469 6 6 6 6 62.6772 624.1803 623.42 25.0121 -0.2849 0.00013937469 7 4.0 25.336 25.376 641.9129 643.9414 642.92 25.3946 - 0.0018667 0.00034846436 8 5.0 26.707 26.727 713.2852 714.3539 713.81 26.7663 - 0.00151643887 9 6.0 27.411 27.441 751.3958 753.0414 752.21 27.4707	1	0.0	2.3468	2.3668	5.50747	5.601742	5.5544	2.4009	0.034069	0.00116072192
1.0										-
3 1.0 15.200 15.240 231.0552 232.2728 231.66 15.2571 - 0.00027689292 4 1.5 18.301 18.351 334.9303 336.7629 335.84 18.3584 0.007260 0.00005271079 5 2.0 18.664 18.684 348.3673 349.1143 348.74 18.7219 -0.03733 0.0013937469 6 3.0 24.953 24.983 622.6772 624.1803 623.42 25.0121 -0.2849 0.0001373469 7 4.0 25.336 25.376 641.9129 643.9414 642.92 25.3946 - -0.2849 0.00034846436 8 5.0 26.707 26.727 713.2852 714.3539 713.81 26.7663 - 0.00151643887 9 6.0 27.411 27.441 751.3958 753.0414 752.21 27.4707 - 0.00151643887 10 7.0 27.516 27.556 757.1523 759.3552 758.25 27.5755 </td <td>2</td> <td>0.5</td> <td>9.1462</td> <td>9.1762</td> <td>83.6530</td> <td>84.2026</td> <td></td> <td>9.2016</td> <td>-0.02543</td> <td>0.00064664624</td>	2	0.5	9.1462	9.1762	83.6530	84.2026		9.2016	-0.02543	0.00064664624
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1.0			231.0552	232.2728		15.2571		0.00027689292
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	5			32		0.016640	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1.5	19 201	10 251	224 0202	226.7620	225 94	10 2504	0.007260	0.00005271070
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	1.3			334.9303	330.7029		16.3364		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2.0		_	348 3673	349 1143		18 7219		
6 3.0 24.953		2.0			340.3073	347.1143		10.7217	0.03733	0.0013/3/40/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	3.0			622.6772	624.1803		25.0121	-0.2849	0.00081171998
8 5.0 26.707 4 4 4 4 713.2852 714.3539 713.81 94 4 4 752.21 27.4707 - 0.00151643887 4 0.038941 48 0.00151643887 0.0038941 0.0038941 48 9 6.0 27.411 27.441 6 6 6 6 6 6 6 6 6 6 6 757.1523 759.3552 758.25 29 27.5755 - 0.019103 28 27.516 27.556 4 4 7 763.2677 764.3732 763.82 0.0019103 28 27.6864 - 0.0039125 46 0.00151643887 0.00084578134 0.0029082 32 11 8.0 27.527 27.647 763.2677 764.3732 763.82 0.0019103 28 27.6864 0.0039125 46 0.0019103 28 0.00153080162 0.0039125 46 12 9.0 27.951 27.981 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										
8 5.0 26.707 26.727 713.2852 714.3539 713.81 26.7663 - 0.038941 48 0.00151643887 9 6.0 27.411 27.441 751.3958 753.0414 752.21 27.4707 0.029082 32 - 0.029082 32 0.00084578134 10 7.0 27.516 4 27.556 4 757.1523 759.3552 758.25 29 27.5755 0.019103 28 - 0.019103 28 0.0003649353 11 8.0 27.627 3 27.647 3 763.2677 3 764.3732 0.33 763.82 0.33 27.6864 27.6864 17 - 0.039125 46 0.00153080162 12 9.0 27.951 8 27.981 8 781.3031 8 782.9811 17 782.14 17 28.0110 17 - 0.029190 36 0.00085207712 0.019291 32 13 10.0 28.456 6 28.496 6 809.7781 6 812.0562 63 810.91 63 28.5159 0.019291 32 - 0.019291 32 0.00037215507 0.019291 32	7	4.0	25.336	25.376	641.9129	643.9414	642.92	25.3946	-	0.00034846436
8 5.0 26.707 4 26.727 4 713.2852 714.3539 713.81 94 26.7663 4 - 0.038941 48 9 6.0 27.411 6 27.441 6 751.3958 753.0414 752.21 82 27.4707 - 0.029082 32 0.00084578134 0.029082 32 10 7.0 27.516 4 4 27.556 4 4 757.1523 759.3552 758.25 29 27.5755 - 0.019103 28 0.0019103 28 11 8.0 27.627 27.647 763.2677 764.3732 763.82 03 27.6864 039125 46 - 0.00153080162 0.039125 46 12 9.0 27.951 27.981 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			0	0			63	67	0.018667	
9 6.0 27.411									2	
9 6.0 27.411 6 6 751.3958 6 753.0414 752.21 82 27.4707 - 0.029082 32 0.00084578134 10 7.0 27.516 4 4 27.556 4 757.1523 759.3552 758.25 29 27.5755 - 0.019103 28 0.0019103 28 11 8.0 27.627 3 3 3 763.2677 764.3732 763.82 03 27.6864 - 0.039125 46 0.0019103 28 12 9.0 27.951 27.981 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	5.0			713.2852	714.3539			-	0.00151643887
9 6.0 27.411 27.441 751.3958 753.0414 752.21 27.4707 - 0.00084578134 10 7.0 27.516 27.556 757.1523 759.3552 758.25 27.5755 - 0.0003649353 11 8.0 27.627 27.647 763.2677 764.3732 763.82 27.6864 - 0.00153080162 12 9.0 27.951 27.981 781.3031 782.9811 782.14 28.0110 - 0.029190 36 13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.00037215507 6 6 6 6,864.28 6,862.23 0.01 0.01			4	4			94	4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.0	27 411	27 441	751 2050	752 0414	750.01	27 4707		0.00004570124
10 7.0 27.516 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9	6.0			/31.3938	/55.0414		27.4707		0.00084378134
10 7.0 27.516 27.556 757.1523 759.3552 758.25 27.5755 - 0.019103 0.019103 28 11 8.0 27.627 27.647 763.2677 764.3732 763.82 27.6864 - 0.00153080162 12 9.0 27.951 27.981 781.3031 782.9811 782.14 28.0110 - 0.029190 0.029190 36 13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.00037215507 6 6 6 6 6,844.28 6,862.23 0.01 0.01			U	O			02			
11 8.0 27.627 27.647 763.2677 764.3732 763.82 27.6864 - 0.00153080162 12 9.0 27.951 27.981 781.3031 782.9811 782.14 28.0110 - 0.029190 13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.00037215507 6 6 6 6,844.28 6,862.23 0.01 0.01	10	7.0	27 516	27 556	757 1523	759 3552	758 25	27 5755	-	0.0003649353
11 8.0 27.627 27.647 763.2677 764.3732 763.82 27.6864 - 0.00153080162 12 9.0 27.951 27.981 781.3031 782.9811 782.14 28.0110 - 0.029190 13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.00037215507 6 6 6 6,844.28 6,862.23 0.01 0.01	10	7.0			757.1525	137.3332		27.3733	0.019103	0.0003017333
12 9.0 27.951 8 8 8 8 781.3031 782.9811 782.14 17 782.14 17 782.14 17 782.14 17 86 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										
12 9.0 27.951 8 8 8 8 781.3031 782.9811 782.14 17 782.14 17 0.0029190 36 28.0110 - 0.0029190 36 0.0029190 36 13 10.0 28.456 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11	8.0	27.627	27.647	763.2677	764.3732	763.82	27.6864	-	0.00153080162
12 9.0 27.951 27.981 781.3031 782.9811 782.14 28.0110 - 0.029190 13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.019291 279.61 280.02 6,844.28 6,862.23 0.01			3	3			03		0.039125	
13 10.0 28.456 6 6 6 6 6 809.7781 812.0562 810.91 63 28.5159 - 0.00037215507 0.019291 32 279.61 280.02 6,844.28 6,862.23 6,862.23 0.01									46	
13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.00037215507 6 6 6 6 809.7781 812.0562 810.91 32 0.019291 32 0.01	12	9.0			781.3031	782.9811		28.0110		0.00085207712
13 10.0 28.456 28.496 809.7781 812.0562 810.91 28.5159 - 0.019291 6 6 6 6 6 6 0.019291 32 279.61 280.02 6,844.28 6,862.23 0.01			8	8			17			
6 6 63 0.019291 279.61 280.02 6,844.28 6,862.23 0.01	12	10.0	20.455	20.405	000 7701	012.0562	010.01	20.5150		0.00027015507
279.61 280.02 6,844.28 6,862.23 32 0.01	13	10.0			809.7781	812.0562		28.5159		0.0003/215507
279.61 280.02 6,844.28 6,862.23 0.01			O	0			0.5			
			279 61	280.02	6 844 28	6 862 23			34	0.01
			98	99	56	70				0.01


TABLE 5: 1.0% KOH, 12:1 alcohol to oil molar ratio at 40° C

S/N	TIME(m	α	β	α^2	β^2	αβ	β_{est}	β - β_{est}	\mathbb{R}^2
0	in)								
1	0.0	2.1682	2.1882	4.7011	4.7882	4.7882	2.1929	-	0.00002224839
								0.000471	09
								682	
2	0.5	9.5462	9.5762	91.1299	91.7036	91.4163	9.571654	-	0.00002066047
							6	0.004544	934
								38	
3	1.0	14.101	14.141	198.843	199.973	199.407	14.12711	0.014089	0.00001985247
		2	2	8	5	9	0	88	184
4	1.5	16.622	16.642	276.290	276.956	276.623	16.6482	-	0.00003797270
		0	0	9	2	3		0.006162	884
								2	
5	2.0	17.746	17.776	314.924	315.989	315.456	17.7724	0.003725	0.00001387853
		1	1	1	7	4		39	065
6	3.0	22.867	22.867	522.908	522.908	522.908	22.8939	-	0.00071752836
		2	2	8	8	8		0.026786	84
								72	
7	4.0	23.615	23.635	557.691	558.636	558.164	23.64236	0.006861	0.00000470808
		50	5	8	9	2	16	55	684
8	5.0	24.299	24.329	590.460	591.919	591.189	24.32633	0.003700	0.00000942526
		4	4	8	7	8	00	6	844
9	6.0	24.640	24.680	607.134	609.107	608.120	24.66706	0.013035	0.00016993703
		1	1	5	3	1		99	53
10	7.0	25.016	25.036	625.805	626.806	626.305	25.04310	0.007001	0.00004902254
		1	1	3	3	6	2	61	259
11	8.0	25.670	25.700	658.959	660.500	659.729	25.69726	0.002932	0.00000860237
		2	2	2	3	3	702	98	168
12	9.0	25.924	25.964	672.100	674.176	673.137	25.95199	0.012907	0.00016660381
		9	9	4	0	4	2	51	44
13	10.0	26.250	26.280	689.088	690.664	689.876	26.27762	0.002874	0.00000826533
		5	5	8	7	3	505	95	7503
		258.46	258.81	5,810.03	5,824.13	5,817.07			0.0015
		79	76	94	12	99			


Effect of alcohol-to-oil molar ratio


The effect of alcohol to oil molar ratio (6:1, 9:1, and 12:1) on ester concentration was studied at 50°C. This results are given in Figure 2.0 (a), (b). As shown in Figures 2.0 and Tables 1.0 to 5.0 ester concentration as well as the % conversion decreased as the alcohol-to-oil molar ratio was increased. This can be explained on the basis of the reactant (oil) concentration in the reaction mixture. By increasing alcohol to oil molar ratio, the amount of alcohol was increased, therefore the Milk bush and catalyst concentrations were diminished, which reduced the rate of reaction. Results published by Boocock et al. (1998) showed a similar trend in which the methyl ester percentage decreased as the alcohol-to-oil molar

ratio was increase. In the case of a higher reaction temperature, although the similar trend of ester concentration (ester concentration decreased with an increase in alcohol-to-oil molar ratio) was observed as shown in Figure 2.0, (b) the % conversion increased with alcohol-to-oil molar ratio (See Table 1.0 to

5.0). As alcohol molar ratio was increased, the polarity of the system was also increased thus improving ionization of KOH. As a result, the rate of the reaction as well as the % conversion was increased.

Result from this part of the study suggest that the optimum in alcohol-to-oil molar ratio operating at low temperature below 50° C was 6:1. However, the higher in alcohol-to-oil molar ratio (12:1) is recommended at higher operating temperature (50° C).

Effect of Time

From the results obtained, it could be observed that as thee time increases, the concentration of ester produced also increased, this is in agreement with the findings of Olatunji et al., (2011), Suppes et al., (2004) and Darnoko and Cheryan (2000)

CONCLUSION

The rate of formation reaction temperature, catalyst concentration, or decreasing alcohol to oil molar ratio was observed. The optimum conditions for milk bush oil methanolysis are at a reaction temperature of 50°C and 1.0 wt % KOH. The 6:1 alcohol-to-oil molar ratio was found to be optimum at low reaction temperature below 50°C. At high reaction temperature (50°C), 12:1 alcohol-to-oil molar ratio is recommended.

REFERENCES

- Akor, A. J., Chancellor, W. J., Raubach, W. (1983). The Potential of Palm Oil as a Motor Fuel. Tran. ASAE, 26(1): 23-28
- Barbour R.H., D.J. Rickeard and N.G. Elliot. (2000). "Understanding diesel lubricity. *SAE Paper*. 01-191.
- Boocock, D.G.B., S.K. Konar, V. Mao, C. Lee and S. Buligan. (1998). "Fast Formation of High-Purity Methyl Esters from Vegetable Oils", *JAOCS* 75(9), 1167-1172.
- Canakei M. and J.V. Gerpen. (2001). "Biodiesel Production from Oils and Fats with High Free Fatty Acids". *Transactions of ASAE* 44(6), 1429-1436.
- Darnoko, D. and M. Cheryan. (2000). Kinetics of palm oil transesterification in a Batch reactor. J. Am. Oil Chem. Soc., 77(12): 1263-1267.
- Freedman B., R.O. Butterfield and E. H. Pryde. (1986). "Transesterification Kinetics of Soybean Oil", *JAOCS* 63(10), 1375-1380.
- Ma, F. and M.A. Hanna. (1999). "Biodiesel Production: A Review", *Bioresource Technology* 70, 1-15.
- Olatunji, O.M., Akor, A.J., Abowei, J.F.N. and Akintayo, C.O. (2011). Transesterification for the preparation of Biodiesel from crude oil of Milk bush, Research Journal of Environmental and Earth Science, 3(4): 358 363, 2011.
- Olatunji, O.M., Akor, A.J. and Abowei, J.F.N. (2012). Modelling The Chemical Kinetics

Of Milk Bush (Thevetia peruviana) Oil Transesterification Process For Biodiesel Production .Continental J. Engineering Sciences, 7(3): 40 – 48, 2011.

- Suppes, G.J., Dasari, E.J., Doskosil, E.J., Mankidy, P.J. and Goff, M.J. (2004). Transesterification of Soyabean oil with zeolite and metal catalysis. Appl. Catal. A: Gen., 257(2): 213-223.
- Zhous W., S.K. Konar and D.G. Boocock. (2003). "Ethyl Esters from the Single-Phase Base-Catalyzed Ethanolysis of Vegetable Oils". *JAOCS*. 80(4), 367-371.